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Abstract Given a braid on N shings, find an algorithm which generates an Anin braid word 
B of minimal length. This is an important unsolved problem-a solution would give us the 
most economical way of notaking and drawing braids. The length of an Artin word equals the 
number of crossings seen in a braid diagram. Minimum crossing numbers provide a measure 
of complexity for braids. This paper presents an algorithm for N = 3. A three-dimensional 
configuration space for 3-braids will also be defined and analysed. 

1. Introduction 

A braid word B notes the successive crossings of a set of strings winding about each other 
between two parallel planes. We employ the Artin presentation for 3-braids 

IUl, 4 ~ l u z ~ l  = ~ 2 ~ 1 ~ 2 1 ~  ( 1 )  

The length of a word is simply the number of characters: if B = u?u,”Iup2 . . . then 
L ( B )  = Iq I + I& I + Iuzl. . . . Many different braid words B can correspond to the same 
topological braid B .  Figure 1 below shows a braid B ,  first represented by a word BO of 
length L(B0) = 12, and then by an equivalent word with the minimum possible length 
L(Bd. )  = 8. 

The diagrams in figure 1 project the braid onto a plane (say the x-z plane). The strings 
may be regarded as beginning and ending each crossing lined up parallel to the x-axis, 
deviating in the y-direction only to move around each other. However, other projections 
are possible, for example, onto a cylinder. Berger (1990a). in a study of braided magnetic 
flux tubes, treated the latter case. Minimal words were found, where the strings begin and 
end each crossing in an equilateral triangle. Independently, Pei Jun Xu (1993) found shortest 
words in the group of elementary 3-braids, which arises from cylindrical projections. 

This paper presents an algorithm for the standard Artin braid group. In knot theory, the 
minimum crossing number provides a good measure of the complexity of knots and links 
(Soteros etal 1992); minimum word length provides a similar measure for braids (in fact, the 
word length for Artin braids equals the number of crossings in a braid diagram). Crossing 
numbers are especially useful in studying physical applications of knot and braid theory. 
Consider a set of flexible knotted or linked tubes, where we fill the interiors of the tubes with 
longitudinal magnetic fields. Freedman and He (1991) have shown that the total magnetic 
energy inside the tubes can be bounded helow if we know the minimum crossing number 
(as averaged over all projection angles). Similarly, the energy of braided magnetic tubes can 
be estimated using minimum word length (Berger 1993). Such calculations are important 
for the study of braided magnetic fields in the atmosphere of the sun (Berger 1990b, 1994). 
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The study of distributions of braids generated by random processes (Berger 199Oa) will also 
clearly benefit from the existence of a measure of complexity. The algorithm for minimizing 
3-braids will be described in terms of the Artin presentation; however, the proof of the 
algorithm relies on an analysis of the configuration space of geometric 3-braids. For a 
comprehensive introduction to braid theory, see Birman (1974). 

Figure 1. The two braids shown are equivalent. The braid B,i. is obtained from 
BO by use of Ihe algorilhm. 

2. The algorithm 

Definition 2.1. A = quzq = U ~ I U ~ .  

Definition 2.2. Given a braid word A ,  let d be the word constructed by replacing each 61 
in A by uz, and vice versa. 

For example, A = o~u;~o;'. d = U Y Y ~ ~ U ; ~ .  Note that A corresponds to a uniform 
twist of the three strings through one half turn; it almost commutes with all other braid 
elements, in the sense that for any word A 

AA = A A  AA-! = A - I R .  (2) 

One can show that Az generates the centre of the group of Artin words; it corresponds to 
a uniform twist of the three strings through one complete turn. The sequence A plays an 
important role in Garside's solution of the braid conjugacy problem (Amol'd 1969). 

Definition 2.3. A wrap is any one of the four sequences 

(3) 

In the following algorithm, we start with an arbitrary braid word BO, which represents 
the braid B.  We convert the braid into a form similar to the Schreier normal form (Birman 
1974). and take care in placing twists. 

Step (i). Search through BO for any occurence of A or A-l. Whenever one is found, bring 
it to the left using AA = AA. For example, 

-I  -1  
01 U2 nul uclu;' 4 0 1  ' 

UtA3uT2A-' + A'CTZU;~A-' -+ A%,-'. 

Proceed until EO has been converted to a word of the form A"& where El is free of As. 
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Step (ti). Next clear away the wraps. By the fundamental relation qqu1 = u2u1uz, 

Search through B1 for all wraps, and remove (unwrap) them by, for example, replacing u1u2 
by Au;'. Then bring the new As to the front as in step (i). The result is either B = APEz 
or B = AP &, where 

Bz = up'u;"u,"u;" . . . u p u p  . (5) 

Here the qs and r s  are positive integers. Let q = E& qi and r = rj. If W(B) is the 
writhe of B (algebraic sum of exponents of the us) then W ( B )  = 3 p  + q - r. 
Step (iii). Here we partially reverse step (ii). For definiteness, suppose that p z 0 and that 
B = APBz. One at a time, we bring a A to the right and combine it with the first U;' 

remaining in the word to form the wrap upl .  Each time this is done, length is reduced by 
2. Thus, 

B = Apufl U;" . . . upu;" 

= AP-laF (A,T;')UT~~+I . . . upu;" 

= Ap-l~~(~z~l)~;rl+l, , .uYu;". 

Now repeat until either there are no AS remaining ( p  < r )  or no OF'S remaining (p 2 r). 
The final result will be called 

Theorem 2.1. Given 8, the word APE2 is unique. The word B ~ D  has the minimum length 
L of any word for B. and is uniquely specified. 

Proof will be given in section 4. Here we give a short intuitive explanation of the 
algorithm, and an example (figure 1). In step (i), length L is reduced by six each time 
there is a cancellation between a A and a A-I. There may be other cancellations, as in the 
example for step (i). In step (ii). L increases by two for each unwrapping, but there may 
be more AA-] cancellations. Thus if at one place in the word UIQ is unwrapped and at 
another place u;Iu;' is unwrapped, there is a net length decrease of 2 after cancellation. 
If there are still As left over after step (ii), then it is most efficient to put them back into 
wraps as done in step (ui). Figure 1 illustrates the following example: 



6208 M A  Berger 

We note here that open braids can be minimized in a similar manner. For an open 
braid top and bottom planes are identified Thus we can cut the braid in two and switch 
the positions of the pieces: if B = B.B,, then by bringing the top piece of the braid Bb 
through the tophottom plane, we get B = E&,. Suppose we minimize the braid through 
step (ii) so that B = APB2, with BZ as in (5). First suppose that p is even. We can apply 
step (iii) to get Emin as usual. Alternatively, we can bring a piece of the braid through the 
tophottom plane first. For example, if r ,  # 0 

B = APuB' . . .  up"^;" = UTrm APuF . . . up" 

= APuFr"aF . . .up". 

The normal form has changed, but otherwise there has been no change in length. Application 
of step (iii) results in a different 

If p is odd, on the other hand, the braid may minimize further. Let us move us through 
one at a time. If the last U is different from the first, then there will be a cancellation: 

but with the same length. 

B = ApoF . . .U;'= = uF1ApOp' . . . uLrm+' 

= Apo;'uF . . . . 

Eventually the last U will be of the same type as the first. In this case bringing the last one 
through will create a wrap, for example, 

B = APO? , . .up" = u1 APO? . . , up"-' 
= / p t I  -1 41-1 u9n-1 = A p ( u 2 ~ l ) ~ ~ l - l  U> Ul . . . I '  

Now A has an even exponent, and step (iii) can be applied to obtain a minimized braid. 

3. The con6guration space for 3-braids 

This section explores the geometry of 3-braids, using the winding number techniques 
introduced in Berger (1991). Geometric braids are discussed in general terms in chapter 1.1 
of Binnan ( I  974). 

Definition 3.1. Let F O , ~ @  be the space 

F0.3c = {(a, b, c)lu, b, c E C,a f 6, b # c, c # a l .  (6) 

Definition 3.2. A geometric braid is a curve y : [O, 11 -+ F03C. We can regard y as 
recording the history of three points a(t), b(t), and ~ ( t )  moving in the complex plane 
between times t = 0 and t = 1. Two geometric braids y1 and y2 are considered equivalent, 
y1 - y2, if there is an isotopic deformation of C x [0, I] which is the identity on C x (0) 
and C x {l), and which sends yt to y2. It will be convenient to make the following choice 
for initial positions of a, b, and c: 

y(0) = (a, 6 ,  c)(O) = (0, 1,2) .  0) 

A h  WP u.4 wnnose that y(1) consists of a permutation of the points 0, 1, 2. 
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Definition 3.3. Define one-forms Oob, obc.  o,, and their integrals heb, Abe, A, by, e.g., 

We can write 

with the understanding that hob takes its values on a Reimann surface above the complex 
plane. 

Defutition 3.4. Define three winding numbers $06, @k, and by, e.g., 

This measures the net winding of string a about string b between 0 and t in units of complete 
tums. (Berger (1991) employs the winding angle Bob = Z Z @ ~ ~ ) .  Also let the total winding 
number be 

w(?) = 'hob(?) + 'hbc(?) + $'co(l). (11) 

Definition 3.5. Let 5 c B3 be the set of all admissible triples (*ab, @bc, Admissible 
means that a triangle in the complex (or Euclidean) plane can have these winding numbers. 

For a right-handed non-degenerate triangle (the path a + b + c goes anti-clockwise) 
an admissible triple (@ab. +k, must satisfy 

For left-handed triangles 

Definition 3.6. A connected region in 5 satisfying (12) will be called a right-handedprism. 
A connected region in ?; satisfying (13) will be called a lefr-handedprism. 
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Figure 2. The phase space 5. The hexagonal holes are forbidden regions. 

Note that if (@ab,  @k, qCa) is admissible, then so is (@ob + x ,  rjrbc + x ,  $rc., + x )  where 
is non-trivial only in a plane perpendicular x is any real number. Thus the geomew of 

to the direction (1, 1 , l ) .  One such plane is the plane W = 0. 
hfrni?kXl 3.7. Let P3 C ?j be the P h e  ( (@abr  @bc, @u)I $ab + @bc + @CO = 0). 

See figure 2. The triangular regions correspond to slices through prisms. The edges 
of these regions (faces of the prisms) are forbidden. The vertices (edges of the prisms) 
correspond to degenerate triangles, i.e. where the three points a, b, and c are colinear. The 
centre of a triangular region in P, corresponds to a, b, and c forming an equilateral triangle. 
Define coordinates &br @be, &a by @ j j  = 6@;j - 2 W. The factor of 6 makes @;j an integer 
at the vertices. We can then project ?j onto P3 by 

(@ob ,  ?hbc, @CO) * ($obi @bae,@m) = 6(@ab .  @bc, @w) - 2(w, w, w) . (14) 

The net winding numbers Yij = @ ; j ( l )  are invariants to isotopic deformations, i.e. if 
y~ - yz then W l o b  = %,b. To see this, note that 'Yob is obtained by integration of the form 

Higher-order winding numbers for braids can be defined in a similar manner (Berger 
because &b is closed this integral is the same for homotopic paths yI and y2. 

1991, Evans and Berger 1992). For example, the third-order invariant is 

[habwbc + Abc% + &@ab - hrrb%o - Lbe%b - ~0 '%1.  (15) 
wubc = If' 
These invariants (for closed braids with vanishing lower-order invariants) correspond to 
Massey higher-order linking numbers and Milnor p numbers. 

The curve y E C3 induces new curves P E 5 and p E "3. These will be called phase 
curves as they describe the evolution of the angles between the three points a, 6 ,  and c. 
Two phase curves A and y2 are equivalent if one can be obtained from the other by an 
isotopic deformation. From the preceding discussion f(1) = (*ab, W,,, W,) is invariant to 
isotopic deformations. Also the beginning point f(0) = (0.0,O) is fixed. 

Theorem 3.1. Two geometric braids are equivalent, y~ - y2, if and only if 71 - fi. 
Proof: If yl ,., yz then there exists a homotopy r ( t , s )  where r(t, 0) = y ~ ( t ) ,  r(t, 1) = 
y~(z ) ,  and for fixed so. r(t ,so) is a geomehic braid. Similarly, 7, - A implies the 
existence of i?(t,s) where r(t, 0) = A@), r(t, 1) = and ?(t ,  SO) is a path through 
5. Given a curve y( t ) ,  F ( t )  = G ( y ( f ) )  where G : Fo.& -+ 3 is given by (8) and 
(10). Suppose y~ - y2. Then let ? ( t , s )  = G ( r ( t , s ) )  for any fixed s. This is the 
required homotopy giving PI - c. Next suppose PI - v2. Then there exists a homotopy 
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F i p  3. The phase curve 7 can be deformed in order to remove the 
Imp through the vertex B. The word ABBC is equivalent to AC. 

+* 
P ( t ,  s) = (@ab, @bc, @ca)(t, s). Given n ( t )  and yz(t), we consmct the homotopy between 
them r(t. s) = ( U ,  b, c)(r ,  s) as follows: first, 

U(t ,S)  = (1 - S ) U l ( t )  + s a z ( t ) .  (16) 

Secondly, let 

rob(t ,s)  = (1 - ~ ) P ~ ( ~ ) - U I @ ) I  +slbz( t ) -az( t ) l  (17) 

then 

b(t ,  s) = ~ ( t ,  s) + rab(t, s)ei*Ob(',') 

c( t ,  s) = a( t ,  s) + rca(t, s)e'*-(',') 

(18) 

and finally 

(19) 

where (for s) - @b&, s) # 0) 

(20) 
- r a d f . ~ )  - rc&,s) 

sin($& s) - @b&, s)) s i n ( @ d ,  s) - $b&, s)) ' 

For isolated values of (t. s) where there is a degeneracy, sin(@&, s) - &(t, s)) = 0, we 
can choose rca(t, s) by continuity. Degeneracies can always be isolated, if necessary, by a 
slight deformation of F(t ,  s). 

Theorem 3.2. An equivalence class of geometric braids is completely and uniquely specified 
by (i) the writhe w = 2W(1) = 2 ( q a b + q & + @ c o ) ,  (ii) a word P formed from three letters 
A, B, and C, where no two consecutive letters are identical, and (iii) a sign s E 1-1, 11. 

PmoJ Since a phase curve i. can be deformed without obstruction in the direction (1,l.l) 
of increasing W. we can always set 

W(t) = tW( l ) .  (21) 

In this case, two equivalent geometric braids satisfying (21) will only differ in their 
projection p in ?3. We can notate by recording the sequence of vertices in "3 that 
7 passes through. Recall that the points a,  6 ,  c are colinear when 7 passes through a 
vertex. Label a vertex 'A' if the point a is in the middle, 'B' for b in the middle, and 
'C' for c in the middle. Starting at t = 0, write down B for the initial point (chosen for 
de6niteness to be ( U ,  b ,  c)  = (0, 1,2)) and write a label whenever i; passes transversely 
through a vertex. End the word with the label of the final point. 
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A deformation of a section of i. can only change the word if that section loops through 
a vertex, as in figure 3. Thus the word can only change by insertion or deletion of repeated 
letters. Conversely, if the word contains repeated letters, then these can be removed by 
isotopic deformation. This task can be performed until there are no remaining repeats. 
(For example, BACABBABC + BACAABC + BACBC.) The curve p passes alternately 
through left and right-handed prisms. The sign s specifies the handedness of the first prism 
that i. passes through. For example if P = BACBC then there are two choices for the 
A vertex (61 passing through a left-handed prism (s = -1). and U;' passing through a 
right-handed prism (s = 1). 

4. The phase e w e s  of Artin braids 

What do Artin words generated from cq and U? look like when represented by 7 or p? Each 
U in the Artin word corresponds to a transition of the geometrical braid: the three points 
a, b, and c begin and end on the real line, but their ordering is permuted. The section of 
p corresponding to a U begins and ends on the edge of a prism; similarly, the section of 
p begins at a vertex in 'P3, passes through one triangular region, and ends at a new vertex. 
Also, each U changes W by zk;. The identity u1uzq = UZUIUZ is illustrated in figure 4. 
Both these words correspond to the half twist A; their phase curves can be deformed into 
a vertical path (along a prism edge) in the direction of increasing W, but with projection p 
staying at a single point. 

Figures 5 and 6 show 01 and the wrap ur'u;', starting with the initial points (0, 1,Z). 
Both make a transition from vertex B to vertex A (the wrap touches the vertex C but does 
not pass through). Starting from any vertex, there are four neighbouring vertices. These 
can be reached directly, by the four moves ul, 02, U;', U;'. or indirectly by adding powers 
of A, for example to form wraps. It will be useful here to factor out the centre of the group 
of (isotopically equivalent) phase curves p. 

Figure 5. The braid element CI and its phase CUNC f .  Figure 6. The wrap u;'u;' and its phase curve 7. 



Minimum crossing numbers for 3-braids 6213 

Definition 4.1. Given two phase curves and pz, '5 fi if - pz (i.e. if pl can be 
deformed into jQ. 

Since A rr 0 (a curve consisting of a single point), by (4) ~(u; 'u; ' )  N ? ( U ] )  as shown 
in figures 5 and 6. 

Proof of theorem 2.1. Let a braid E have phase curve and let [p] be its equivalence 
class under N. Each member of [PI has the same minimal vertex sequence P. A 
transition between vertices in P can have word length 1,2,4,5,7,8, .  . . (e.g. uI, u;'u;'. 
A U I ,  A-b;', . . .). Given each transition there is exactly one way of making the transition 
using a single U. Then there is a unique curve fi with Artin word E2 formed by making each 
transition with a single U. Let L(P) = (number of letters in P )  - 1. Then L(&) = L(P). 
If 7 .J. fi then 7 and pz differ by a power p of A .  Since the writhe is an invariant, 
p = (I&(?) - W(p2))/3. The factor AP can be placed in front to make E = APEz. The 
length of the word may vary depending on where the As are placed, 01 in other words, 
where 7 climbs above or below h. The net length of Ape,  can be decreased only by 
forming wraps from a A and a U-' or from a A-' and a U .  Thus if p is positive, the As 
should be distributed among the u-ls. If p > r there will be p ! / r ! ( p  - r )!  ways of doing 
this. A unique distribution can be specified by converting the first p u-'s into wraps. 

We conclude by considering the general problem of minimizing N-braids for N > 3. 
We can compute the dimension of configuration space for N-braids as follows: at each 
value of t we can translate the braid so that the first string stays at ( x ,  y )  = (0,O). This 
leaves 2(N - 1)  dimensions. Scaling and projecting out twist removes 2 more dimensions. 
Thus the dimension of the space analogous to P, is 2(N - 2). Only for N = 3 is this small 
enough to make the problem simple. 
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